Novel Trigonal ZrWMoO₈ Structure and Its Transformations

Xuebin Deng,[†] Juzhou Tao,**,^{‡,§} Xiaojing Yang,[†] Hui Ma,[△] James W. Richardson, Jr.,[‡] and Xinhua Zhao*,[†]

College of Chemistry and Analysis and Test Center, Beijing Normal University, Beijing 100875, P.R. China, Intense Pulsed Neutron Source, Argonne National Laboratory, Argonne, Illinois 43009, and Experiment Physics Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China

Received June 16, 2007. Revised Manuscript Received December 20, 2007

We found two new trigonal polymorphs of cubic ZrWMoO₈ with a negative thermal expansion property and successfully solved and refined their structures using X-ray and/or neutron powder diffraction data. The space group of low temperature trigonal ZrWMoO₈ is $R\bar{3}$ with cell parameters a=9.8722(1) Å and c=17.5455(2) Å, a polytype of the layered trigonal ZrMo₂O₈ structure. The space group of high temperature trigonal ZrWMoO₈ is $P\bar{3}ml$, and the cell parameters are a=5.8404(1) Å and c=6.0671(2) Å. The thermal expansion and phase transition properties of the trigonal and cubic phases were also studied, and consistent structure–property correlation in this system was found. The phase transitions between two forms of trigonal phases and between high temperature trigonal and cubic phases are reversible first order phase transitions. Utilizing the established polymorphous phase transitions, tailorable synthesis of solid oxide materials with controllable thermal expansion property is anticipated in this family.

Introduction

The cubic AM_2O_8 family of solid oxides (A = Zr, Hf and M = Mo, W) has received considerable research attention during the past decade for their large isotropic negative thermal expansion (NTE) over a wide temperature range. $^{1-3}$ While controversy still remains over the exact structural mechanism leading to NTE, $^{4-7}$ there is consensus that the isotropic NTE property originates from the unique cubic crystal structure. 3 Many groups have been studying isomorphism and polymorphism behaviors of this family, $^{8-12}$ both to investigate the crystal structure and thermal property relationship in depth and to explore procedures for tailored

* Corresponding author. Fax: +86-10-5880-2075. E-mail: xinhuaz@bnu.edu.cn.

- [†] College of Chemistry, Beijing Normal University.
- * Argonne National Laboratory.
- § Chinese Academy of Sciences.
- Analysis and Test Center, Beijing Normal University.
- Mary, T. A.; Evans, J. S. O.; Vogt, T.; Sleight, A. W. Science 1996, 272, 90.
- Lind, C.; Wilkinson, A. P.; Hu, Z.; Short, S.; Jorgensen, J. D. Chem. Mater. 1998, 10, 2335.
- (3) Evans, J. S. O.; Mary, T. A.; Vogt, T.; Subramanian, M. A.; Sleight, A. W. Chem. Mater. 1996, 8, 2809.
- (4) Pryde, A. K. A.; Hammonds, K. D.; Dove, M. T.; Heine, V.; Gale, J. D.; Warren, M. C. J. Phys.: Condens. Matter 1996, 8, 10973.
- (5) Cao, D.; Bridges, F.; Kowach, G. R.; Ramirez, A. P. Phys. Rev. B 2003, 68, 014303-1.
- (6) Tucker, M. G.; Goodwin, A. L.; Dove, M. T.; Keen, D. A.; Wells, S. A.; Evans, J. S. O. Phys. Rev. Lett. 2005, 95, 255501-1.
- (7) Tao, J. Z.; Sleight, A. W. J. Solid State Chem. 2003, 173, 442.
- (8) Lind, C.; Wilkinson, A. P.; Rawn, C. J.; Payzant, E. A. J. Mater. Chem. 2002, 12, 990.
- (9) Closmann, C.; Sleight, A. W.; Haygarth, J. C. J. Solid State Chem. 1998, 139, 424.
- (10) Grzechnik, A.; Crichton, W. A.; Syassen, K.; Adler, P.; Mezouar, M. Chem. Mater. 2001, 13, 4255.
- (11) Deng, X.-B.; Zhao, X.-H.; Han, J.-S. Wuji Huaxue Xuebao 2005, 21, 1357.
- (12) Huang, L.; Xiao, Q.-g.; Ma, H.; Li, G.-b.; Liao, F.-h.; Qi, C.-m.; Zhao, X.-h. Eur. J. Inorg. Chem. 2005, 4521.

synthesis of materials with adjustable thermal expansion properties. The results showed that different AM₂O₈ isomorphous modifications vary significantly in thermal stability, for example, metastable cubic ZrW₂O₈ decomposes into WO₃ and ZrO₂ above 773 °C,¹² while cubic ZrMo₂O₈ transforms into a trigonal polymorphous phase over 390 °C instead.² By means of Mo atoms partially substituting W atoms, pure phase isomorphous solid solutions ZrW_{2-x}Mo_xO₈ were synthesized successfully, through which we are able to modify and control the thermal properties and extend the thermal stability range of cubic ZrW₂O₈ type materials.¹²

In the AM_2O_8 (A = Zr, Hf; M = W, Mo) family of compounds, triclinic, 13 monoclinic, $^{13-15}$ orthorhombic, $^{16-18}$ trigonal, $^{19-22}$ hexagonal, 10 and cubic 2,3 structure types have all been reported. Among them the two trigonal phases α -ZrMo $_2O_8$ and α' -ZrMo $_2O_8$ are most relevant to this work, and the low temperature superstructure α -ZrMo $_2O_8$ phase undergoes a displacive phase transition at 214 $^{\circ}$ C to a high temperature α' -ZrMo $_2O_8$ phase. 22 There have been structural studies of the $A_{1-x}A_x'M_{2-y}M_y'O_8$ (A = Zr, Hf; M = W, Mo)

- (13) Carlson, S.; Andersen, A. M. K. Phys. Rev. B 2000, 61, 11209.
- (14) Auray, M.; Quarton, M.; Tarte, P. Powder Diffr. 1989, 4, 29.
- (15) Achary, S. N.; Mukherjee, G. D.; Tyagi, A. K.; Godwal, B. K. *Phys. Rev. B* **2002**, *66*, 184106-1.
- (16) Evans, J. S. O.; Hu, Z.; Jorgensen, J. D.; Argyriou, D. N.; Short, S.; Sleight, A. W. Science 1997, 275, 61.
- (17) Jorgensen, J. D.; Hu, Z.; Short, S.; Sleight, A. W.; Evans, J. S. O. J. Appl. Phys. 2001, 89, 3184.
- (18) Allen, S.; Warmingham, N. R.; Gover, R. K. B.; Evans, J. S. O. Chem. Mater. 2003, 15, 3406.
- (19) Auray, M.; Quarton, M.; Tarte, P. Acta Crystallogr., Sect. C 1986, 42, 257.
- (20) Wilkinson, A. P.; Lind, C.; Pattanaik, S. Chem. Mater. 1999, 11, 101.
- (21) Noailles, L. D.; Peng, H. H.; Starkovich, J.; Dunn, B. Chem. Mater. 2004, 16, 1252.
- (22) Allen, S.; Ward, R. J.; Hampson, M. R.; Gover, R. K. B.; Evans, J. S. O. Acta Crystallogr., Sect. B 2004, 60, 32.

system, ^{9,12,23,24} especially the ZrWMoO₈ solid solution, where only cubic and orthorhombic phases were reported. ^{12,23}

In the present work, by means of the solid-state route, two trigonal crystal structures of $ZrWMoO_8$, one in low temperature (LTT hereafter) and another in high temperature (HTT hereafter) were obtained. The LTT- $ZrWMoO_8$ is a novel structural type. The phase transformations among these two polymorphous and the cubic structures are also discussed in detail.

Experimental Section

Sample Preparation. Analytical reagent purity ZrO(NO₃)₂· 2H₂O (Beijing Chemical Reagents Company), (NH₄)₆W₇O₂₄•6H₂O, and (NH₄)₆Mo₇O₂₄·4H₂O (Tianjin Guangfu Fine Chemical Research Institute) were used as starting materials without further purification. The H₂O content in hydrates was checked and calibrated by a gravimetric method. White precipitation was first obtained by adding 40 mL of an aqueous solution of 0.5 mol·L⁻¹ Zr^{4+} and $[0.5 + 0.5 \text{ mol} \cdot L^{-1}]$ mixed ionic solution $[W^{6+} + Mo^{6+}]$ simultaneously into 30 mL of distilled water dropwise, the mixture was then stirred continuously for 2 h and dried together with the mother liquid to produce a yellowish or white solid. After grinding, this solid product was pressed into pellets, sintered at 600 °C for 5 h, and quenched to room temperature to obtain LTT-ZrWMoO₈ samples. As there was no notable weight loss during the heating process, this procedure ensures stoichiometry of the final product. The LTT-ZrWMoO₈ sample was pressed into 10 mm pellets under a pressure of 10 MPa and was put into a platinum crucible which was put in a ceramic crucible. The pellet was sintered at 980 °C for 1 h and then quenched to room temperature to produce a cubic ZrWMoO₈ phase. HTT-ZrWMoO₈ was obtained in situ by heating cubic ZrWMoO₈ or LTT-ZrWMoO₈ at a certain temperature.

Measurements. Both differential scan calorimetry (DSC) and X-ray diffraction (XRD) measurements were carried out at standard settings described elsewhere. ¹² In brief, the DSC measurements were performed in air atmosphere, at the heating rate 5 °C·min⁻¹ in the temperature range of 30–400 and 10 °C·min⁻¹ in the temperature range of 30–1100 °C.

Room temperature XRD data from $2\theta = 10$ to 120° and in situ variable temperature XRD data from $2\theta = 10$ to 80° were collected with a step size of 0.0167° (2 θ) and step time of 20 s. For collecting in situ variable temperature XRD data, the temperature ramp rate was 30 °C·min⁻¹ and waiting time was 3 min before every measurement below 750 °C. Above the temperature, the temperature ramp was 60 °C·min⁻¹, and the data were recorded without waiting time. Room temperature time-of-flight neutron powder diffraction (NPD) data were collected on the General Purpose Powder Diffractometer (GPPD) at the Intense Pulsed Neutron Source, Argonne National Laboratory, with 8 g of LTT-ZrWMoO₈ sample over a period of 3 h. The XRD patterns of HTT- and LTT-ZrWMoO₈ phases were indexed using the PowderX software suite.²⁵ Cell parameters at different temperatures were calculated from in situ variable temperature XRD data with both PowderX and Unitcell softwares.²⁶

The Q400EM (TA Instruments) thermomechanical analyzer (TMA) with a macro-expansion quartz probe was used to collect the thermal expansion data of cubic $ZrWMoO_8$ ceramic pellets.

The data were collected with a heating rate of 5 °C·min⁻¹ from room temperature to 750 °C, held for 5 min, and then cooled to room temperature at the same rate under air atmosphere and a constant force of 0.5 N. The cell constant of the instrument was calibrated using aluminum and the temperature was calibrated using the metals In, Sn, Bi, Zn, and Al, as standard substances, respectively.

The density of LTT-ZrWMoO $_8$ powder was measured by a pycnometric method at 30 °C. Prior to the measurement, the pycnometric density of the paraffin oil which acted as an immersion liquid was calibrated using distilled water as the standard at the same temperature.

Refinement of Trigonal ZrWMoO $_8$ Crystal Structures. The GSAS suite 27,28 was used for the structure analysis and refinement. For HTT-ZrWMoO $_8$ only isotropic atomic displacement parameters were refined, whereas for LTT-ZrWMoO $_8$ full anisotropic atomic displacement parameters were refined successfully. The distortion parameters in metal–oxygen coordination polyhedra were calculated with the VICS-II program. 29

The HTT-ZrWMoO₈ structure was refined with X-ray data using the crystal structure of α' -ZrMo₂O₈ (space group $P\bar{3}ml$)²² as the starting model. The LTT-ZrWMoO8 structure was refined with neutron data from the highest resolution detector banks based on the structure model described below. For the refinement of the LTT-ZrWMoO₈ structure, before the refinement of the structural parameters, the overall parameters were refined first. The atomic displacement parameters were refined first with the isotropic parameters and then the anisotropic parameters. During final cycle of refinement, a total of 61 parameters were refined (four background parameters, one scale factor, three peak shape parameters, one absorption/reflectivity correction, two cell parameters, 16 fractional atomic coordinates, and 34 anisotropic atomic displacement parameters). To confirm the refinement results, the XRD data were refined using the fixed structural parameters and cell parameters which result from the neutron refinement. For final cycle of XRD refinement, a total of 18 parameters were refined (10 background parameters, one scale factor, five peak shape parameters, one zero offset correction, and one preferred orientation correction). The XRD refinement results indicate the model fitting the X-ray data as well. All refinement results and conditions were recorded into the corresponding Crystallographic Information Files (CIF), and these files are available from Supporting Information.

Results and Discussion

Crystal Structure of High Temperature Trigonal Zr-WMoO₈ (HTT-ZrWMoO₈). The in situ XRD pattern of the HTT-ZrWMoO₈ phase at 750 °C is shown in Figure 1. The reflections were indexed in the trigonal crystal system with resulting cell parameters of a = 5.8355(1) Å and c = 6.0628(2) Å. The XRD pattern as well as the indices of the HTT-ZrWMoO₈ is similar to that of trigonal α' -ZrMo₂O₈. Given the isomorphism between ZrMo₂O₈ and ZrW₂O₈, the crystal structure of α' -ZrMo₂O₈ was chosen as the starting structure model to refine the crystal structure of HTT-ZrWMoO₈ by the Rietveld method, in which half the W atoms are substituted by Mo atoms. The refined XRD plot of HTT-ZrWMoO₈ and the final results are shown in Figure

⁽²³⁾ Kameswari, U.; Sleight, A. W.; Evans, J. S. O. Int. J. Inorg. Mater. 2000, 2, 333.

⁽²⁴⁾ Zhao, X.-h.; Huang, L.; Liu, P.-h.; Ma, H. Chin. J. Chem. 2003, 21, 1529.

⁽²⁵⁾ Dong, C. J. Appl. Crystallogr. 1999, 32, 838.

⁽²⁶⁾ Holland, T. J. B.; Redfern, S. A. T. Mineral. Mag. 1997, 61, 65.

⁽²⁷⁾ Larson, A. C.; Von Dreele, R. B. *General Structure Analysis System* (GSAS); Los Alamos National Laboratory Report LAUR 86-748; Los Alamos National Laboratory: Los Alamos, NM, 2000.

⁽²⁸⁾ Toby, B. H. J. Appl. Crystallogr. 2001, 34, 210.

⁽²⁹⁾ Dilanian, R. A.; Izumi, F. VIsualization of Crystal Structures - II, Version 0.92.6: 2006.

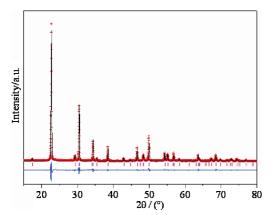


Figure 1. Final Rietveld refined XRD plot and difference plot for HTT-ZrWMoO₈. The crosses are the observed data, the solid line is the calculated pattern, and the tick marks indicate the calculated reflection positions. The difference curve is plotted below.

Table 1. Refinement Results for LTT-ZrWMoO₈^a and HTT-ZrWMoO8

	LTT - $ZrWMoO_8$	HTT - $ZrWMoO_8$		
space group	R3̄	P3m1		
a (Å)	9.8722(1)	5.8404(1)		
c (Å)	17.5455(2)	6.0671(2)		
$V(\mathring{A}^3)$	1480.905(20)	179.223(7)		
$R_{ m wp}$	0.0534	0.083		
$R_{\rm p}$	0.0371	0.0588		
$rac{R_{ m p}}{R_{ m F}^2}$	0.03225	0.08807		
$R_{ m e}$	0.0419	0.0280		
goodness-of-fit, S	1.28	2.98		

^a The data obtained from X-ray refinement. ^b The data obtained from neutron refinement.

1 and Table 1, respectively. The polyhedral representations of the HTT-ZrWMoO₈ crystal structure are presented in Figure 2.

To compare with the structure of LTT-ZrWMoO₈, some features of the HTT-ZrWMoO8 structure are emphasized here so that the HTT-ZrWMoO8 structure can be described as a stacking of layers of corner-sharing ZrO₆ octahedra and MO₄ (M = W/Mo) tetrahedra. As shown in Figure 2 the layers parallel to (001) planes and the building period of layers are a single stack. The linkage between ZrO₆ and MO₄ coordination polyhedra in a stack is the same as that in the cubic ZrW₂O₈ crystal structure. The orientations of all ZrO₆ octahedra are identical, whereas MO₄ tetrahedra in a single stack, which is associated with an inversion center, point toward the $\langle 001 \rangle$ direction with M-O_{terminal} bonds.

The distances between an Oterminal atom and the closest Zr as well as M atom in the adjacent stack are 4.33 Å and 3.508 Å, respectively. The large interatomic distance indicates that only a weak Van der Waals force exists between stacks.

Crystal Structure of Low Temperature Trigonal Zr-WMoO₈ (LTT-ZrWMoO₈). Figure 3 shows the XRD pattern of the LTT-ZrWMoO₈ sample. All peaks of the pattern can be indexed as trigonal symmetry without question. According to the extinction condition of the pattern the possible space groups are R3, $R\overline{3}$, R32, R3m, and $R\overline{3}m$. The cell parameters of LTT-ZrWMoO₈ (a = 9.8665(3) Å, c =17.5330(89) Å) are similar to those of trigonal ZrW₂O₈ phase (a = 9.81 Å, c = 17.6 Å) with unknown crystal structure.²¹ Wilkinson et al.²⁰ also synthesized a trigonal ZrW₂O₈ phase (a' = 9.81 Å, c' = 11.73 Å) using a nonhydrolytic sol-gel

method; however, the parameter c' is shorter than the present parameter c, and the phase was identified as another isomorph of trigonal α -ZrMo₂O₈ (space group $P\bar{3}1c$).

It is clear from Figure 3 (insets a and b) that the indices of hk0 reflections remain identical in both LTT-ZrWMoO₈ and α-ZrMo₂O₈, but the 00*l* indices of the former are 3/2 times those of the latter. Because of the isomorphism between the two high temperature phases of HTT-ZrWMoO₈ and α'- $ZrMo_2O_8$ and the polytypism of α' - $ZrMo_2O_8$ and α - $ZrMo_2O_8$, considered together with the relationship between cell parameter values $a(LTT-ZrWMoO_8) \approx a(\alpha-ZrMo_2O_8)$ and $c(LTT-ZrWMoO_8) \approx 1.5c (\alpha-ZrMo_2O_8) (\alpha-ZrMo_2O_8, a =$ 10.1416 Å, c = 11.7129 Å), 22 it is deduced that LTT-ZrWMoO₈ has a structure similar to that of α-ZrMo₂O₈, instead of a building period of stacking from two to three. The structure model gives rise to a formula number of 9 in a unit cell. This result coincides well with the measured crystal density of 5.1 g·cm⁻³. The initial atomic positions (x, y, z) of the structural model are set with the atomic coordinates of α -ZrMo₂O₈ (x = x'; y = y'; z = 2/3z', where x', y', z' are the atomic coordinates for α -ZrMo₂O₈), in which the coordinate z is adjusted to match the multiple unit vector c of LTT-ZrWMoO₈. Therefore, based on the above discussion, the structure of LTT-ZrWMoO₈ was solved and refined with the structure model by using Rietveld method. The refinement results and the refined NPD pattern of LTT-ZrWMoO₈ are shown in Table 1 and Figure 4, respectively. The refined XRD pattern and bond valence calculation results are available from Supporting Information.

Compared to the HTT-ZrWMoO₈ structure, the building period of layers of the LTT-ZrWMoO₈ structure changes to three stacks, as shown in Figure 5. The linkage between ZrO₆ octahedra and MO₄ tetrahedra remain identical within a stack as that of HTT-ZrWMoO₈, but the metal-oxygen polyhedron symmetry is lower than that of HTT-ZrWMoO₈ as a result of distortion of polyhedron (Table 2). In the LTT-ZrWMoO₈ structure, the Zr position splits into two types of point symmetry: Zr1 and Zr2. The octahedron of Zr1 with six O3 atoms is slightly distorted because the bond angle of O3r1-O3 deviates slightly from 90°, although the bond length of six Zr1-O3 is equal. The six Zr2-O bonds of ZrO₆ octahedron separate into two groups: three Zr2-O1 and three Zr2-O2 bonds, and the values of distortion index D (bond length)³⁰ and bond angle variance σ^2 ³¹ are both larger than that in Zr1O₆ octahedron. As all bond lengths and bond angles of an MO₄ tetrahedron are different from each other, and the MO₄ tetrahedron is significantly distorted to an irregular polyhedron. It must be emphasized that the bond angle variance σ^2 of LTT-ZrWMoO₈ is especially large.

Bond valence calculations ^{32,33} for LTT-ZrWMoO₈ show that significant polyhedral distortion of MO₄ tetrahedron introduces extra M···O_{terminal} interaction (we call it secondary bonds) between the M atom and the closest neighboring terminal oxygen atom of the MO₄ tetrahedron between the adjacent stacks. The additional bond valence is 0.21.

⁽³⁰⁾ Baur, W. H. Acta Crystallogr., Sect. B 1974, 30, 1195.

⁽³¹⁾ Robinson, K.; Gibbs, G. V.; Ribbe, P. H. Science 1971, 172, 567.

Brown, I. D.; Shannon, R. D. Acta Crystallogr., Sect. A 1973, 29,

⁽³³⁾ Brown, I. D.; Wu, K. K. Acta Crystallogr., Sect. B 1976, 32, 1957.

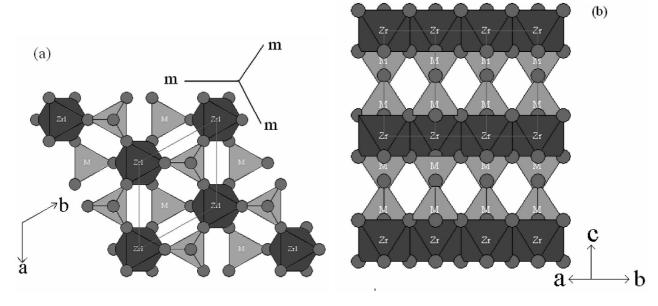
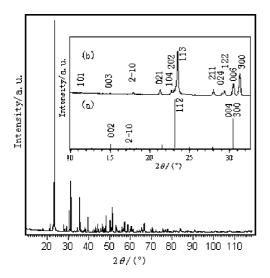
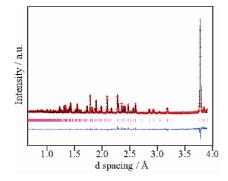




Figure 2. Polyhedral representations of the two-dimensional structural stack along [001] (a) and the close packing of stacks of HTT-ZrWMoO₈ along [210] (b). \vec{a}, \vec{b} , and \vec{c} represent the translation vectors of the lattice, and m represents the mirror planes with respective directions.

Figure 3. XRD pattern of LTT-ZrWMoO₈ at room temperature. The inset shows some of the reflections for α -ZrMo₂O₈ according to JCPDS (77-1784) (a) and LTT-ZrWMoO₈ (b). The indices are displayed near the reflections.

Figure 4. Final Rietveld refined NPD plot and difference plot for LTT- $ZrWMoO_8$. The crosses are the observed neutron diffraction data, the solid line is the calculated pattern, and the tick marks indicate the calculated reflection positions. The difference curve is plotted.

Consequently in the neighboring layer, terminal oxygen in MO₄ tilts toward the closest nearby MO₄, leading to a 23°

angle between the M-O4 (M-O_{terminal}) bond direction and the [001] direction. The distance between this terminal oxygen and the next closest M atom in the nearby layer is only 2.46 Å, which is shorter than the interatomic distance of resulting from Van der Waals force as that in HTT-ZrWMoO₈. So the idea is reasonable that there is a secondary bond interaction adding to the existing Van der Waals force.

Significant polyhedral distortions in $Zr2O_6$ and MO_4 also introduce corresponding distortion in every layer. Structure refinement results showed that Zr1 position was chosen as the origin of the unit cell, and Zr2 atoms have fractional coordinates (2/3, 1/3, 0.037) and (1/3, 2/3, -0.037), respectively. Thus, in the LTT-ZrWMoO₈ structure, the stacks form waggling layers instead of flat ones, as illustrated in Figure 5.

Both LTT-ZrWMoO₈ and α -ZrMo₂O₈ are polytype modifications of α' -ZrMo₂O₈ structure. The difference lies in the fact that the latter consists of two stacks as the repeating unit and the former contains three. The change of distortion parameters in metal—oxygen polyhedron between the two phases is comparable in value except for the bond angle variance σ^2 of MO₄ (Table 2). In LTT-ZrWMoO₈, half of the Mo atoms are substituted by W with weaker valence bonds, introducing larger bond angle distortion of MO₄ than that in α -ZrMo₂O₈. The emergence of secondary bonds in turn leads to folding or stacking in LTT-ZrWMoO₈ and gives rise to 3₁ symmetry compared with only glide plane symmetry existing in the α -ZrMo₂O₈ structure.

Phase Transition between LTT-ZrWMoO₈ and HTT-ZrWMoO₈. In situ temperature variable XRD experiments (Figure 6) indicate that LTT-ZrWMoO₈ transforms to HTT-ZrWMoO₈ when heated, and DSC analysis data (Figure 7) show that this phase transformation is reversible. The transition temperature is about 250 °C on the heating cycle, and the reversed phase transformation is about 212 °C on the cooling cycle as a result of thermal lag. The enthalpy change is small; therefore, the HTT-ZrWMoO₈ phase could not be obtained by the usual quenching method.

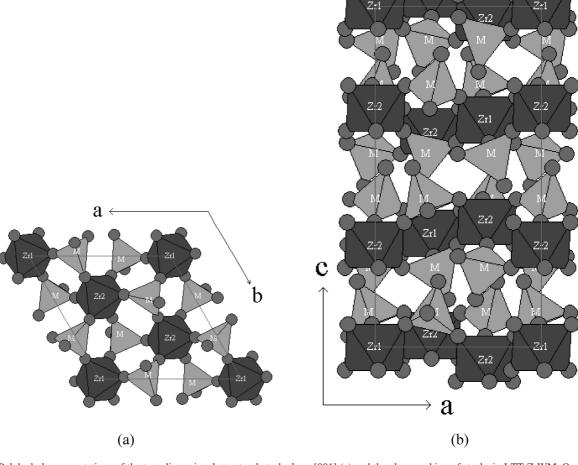


Figure 5. Polyhedral representations of the two-dimensional structural stack along [001] (a) and the close packing of stacks in LTT-ZrWMoO₈ along [010] (b). \vec{a}, \vec{b} , and \vec{c} represent translation vectors of the lattice.

Table 2. Distortion Parameters^{30,31} in Metal-Oxygen Coordination Polyhedra of HTT-ZrWMoO₈, LTT-ZrWMoO₈, and α-ZrMo₂O₈^α

	HTT-Zr	HTT-ZrWMoO ₈		LTT-ZrWMoO ₈			α-ZrMo ₂ O ₈		
	ZrO ₆	MO_4	Zr1O ₆	Zr2O ₆	MO_4	Zr1O ₆	Zr2O ₆	MoO ₄	
distortion index (bond length)D	0.000	0.044	0.000	0.006	0.011	0.000	0.001	0.016	
bond angle variance σ^2 (deg ²)	0.241	1.930	1.422	7.484	48.145	1.598	3.327	1.543	

^a The coordinates reported by Auray et al. ¹⁹ were used to calculate the distortion parameters.

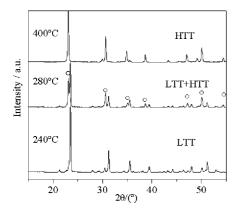


Figure 6. In situ XRD patterns of trigonal ZrWMoO8 at different temperatures. Open circles indicate extra HTT-ZrWMoO₈ reflections at higher temperature.

The cell parameter and volume changes of trigonal ZrWMoO₈ with temperature are plotted in Figure 8. For LTT-ZrWMoO₈ they all increase with temperature between

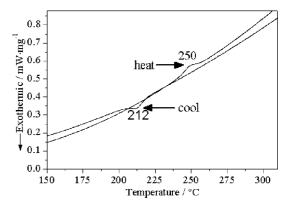


Figure 7. DSC curves of LTT-ZrWMoO₈ between 150 and 300 °C.

25 and 280 °C, the volume $(\alpha_{\rm V} (\times 10^{-6})^{\circ}{\rm C}) = (V_{T_2} - V_{T_1})/(V_{T_1}(T_2 - T_1))$) and linear $(\alpha_1 (\times 10^{-6})^{\circ}{\rm C}) = (l_{T_2} - l_{T_1})/(l_{T_1}(T_2 - T_1))$ $-T_1$))) thermal expansion coefficients are $\alpha_V = 70(2)$, α_a = 24.5(9), and α_c = 20(1), respectively. For HTT-ZrWMoO₈ cell volume and cell parameter c also increase with temper-

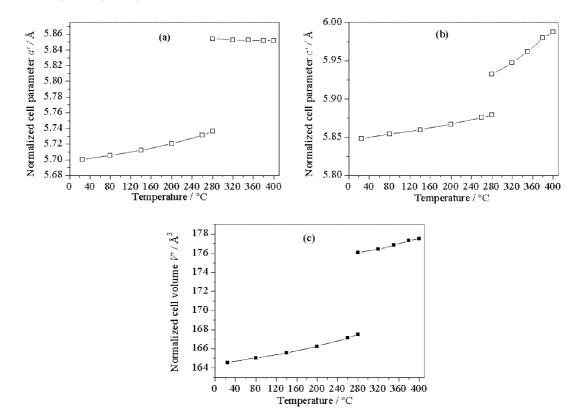
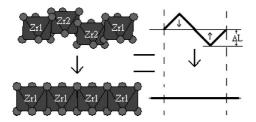



Figure 8. Temperature dependence of normalized cell parameters: a' (a), c' (b), and cell volume V' (c) for trigonal ZrWMoO₈. For convenience, the cell parameters and cell volume were normalized. The normalized cell parameter a' = a/1.732, c' = c/3 and cell volume V' = V/9 for LTT-ZrWMoO₈ and a' = a, c' = c, and V' = V for HTT-ZrWMoO₈ (a, c, and V are cell parameters and cell volume, respectively).

Figure 9. Illustration of which stack folding ΔL changes when LTT-ZrWMoO₈ transforms into HTT-ZrWMoO₈.

ature between 280 and 400 °C with $\alpha_V = 69(3)$ and $\alpha_c = 77(2)$, while the cell parameter *a* decreases with temperature with $\alpha_a = -4(1)$.

HTT-ZrWMoO₈ demonstrates NTE in two dimensions (*ab* plane) compared to that of isotropic NTE in cubic ZrW₂O₈. This is consistent with the fact that identical polyhedron corner sharing between ZrO₆ octahedron and MO₄ tetrahedron exists in the *ab* plane of the HTT-ZrWMoO₈ structure as in cubic ZrW₂O₈. The rigid unit modes (RUMs)^{4,6} which were proposed to lead to NTE are expected to function similarly here, the difference being a 2-D case instead of 3-D.

The positive thermal expansion of LTT-ZrWMoO₈ in the ab plane is related to the folding ($\Delta L = 0.65$ Å) of stacks, as shown in Figure 9. When the temperature is raised, the degree of this folding ΔL gradually decreases, leading to the expansion of the stack dimension in the ab plane. This expansion overwhelms the lattice shrinking effect because of the rigid unit mode motions, giving rise to positive thermal expansion. This model is supported by the fact that the thermal expansion coefficients of cell parameter a decrease

with stack folding ΔL in LTT-ZrWMoO₈, α -ZrMo₂O₈, and α' -ZrMo₂O₈ (HTT-ZrWMoO₈).

The large thermal expansion coefficients for cell parameter c in HTT-ZrWMoO $_8$ are due to the fact that the interaction between stacks along the c direction are van der Waals forces in nature, which also explains why the thermal expansion coefficient for cell parameter c is smaller in LTT-ZrWMoO $_8$, as an additional "secondary bond" is present in its structure compared with that of HTT-ZrWMoO $_8$.

The significant additional "secondary bond" present in LTT-ZrWMoO₈ is also the reason why the phase transformation to HTT-ZrWMoO₈ is a first order transition instead of a second order displacement phase transition, such as the one between α -ZrMo₂O₈ and α' -ZrMo₂O₈. This is strongly supported by experiment observations of a sudden increase of unit cell volume, thermal lag, and endothermic heat as shown in Figures 7 and 8.

Phase Transition between Cubic ZrWMoO₈ and Trigonal ZrWMoO₈. In Figure 10 the DSC curve of LTT-ZrWMoO₈ exhibits an endothermic peak around 921 °C. According to the in situ variable temperature XRD patterns as shown in Figure 11, the phase transition takes place at around 900 °C from HTT-ZrWMoO₈ to cubic ZrWMoO₈ structures. The XRD pattern of cubic ZrWMoO₈ at 25 °C synthesized by quenching is also shown in Figure 11. The indexed result indicates that it adopts the β-ZrW₂O₈ structure with cell parameter a = 9.1377 (1) Å, which is similar with the value 9.1400 (5) Å reported by Sleight et al.²³ During the sintering process, the weight loss of this sample which is attributed to the volatility of MoO₃ is 1.3 wt %, so the

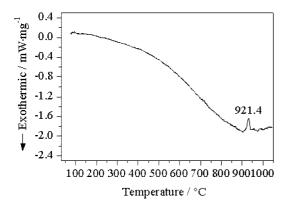


Figure 10. LTT-ZrWMoO₈ DSC scan, the slope comes from instrument background.

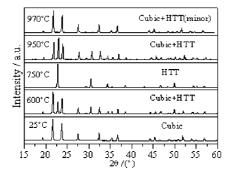


Figure 11. In situ variable temperature XRD patterns of cubic ZrWMoO₈ at different temperatures.

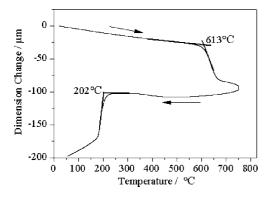


Figure 12. TMA curve of metastable cubic ZrWMoO₈.

exact formula is ZrW_{1.02}Mo_{0.98}O₈ accompanied with trace ZrO₂ in the material.

Figure 12 shows the result of TMA data for a cubic ZrWMoO₈ ceramic pellet sample under a circulatory heating process. The metastable cubic ZrWMoO₈ demonstrates excellent bulk NTE property below 600 °C. At 613 °C, the bulk length shrinks dramatically, corresponding to the phase transition from cubic ZrWMoO₈ to higher density HTT-ZrWMoO₈ according to variable temperature XRD patterns shown in Figure 11. The circulatory heating results indicate that the cubic phase is only metastable at room temperature. When the temperature decreases to 200 °C, the further decrease of bulk size corresponds to the transformation of HTT-ZrWMoO₈ to LTT-ZrWMoO₈ rather than cubic ZrW-MoO₈.

Cubic ZrWMoO₈ is a 3-D framework structure while HTT-ZrWMoO₈ is a layered structure, the phase transition in between involves reconstruction of chemical bonds and is therefore a reversible first order reconstructive phase transition. The transformation is slow with obvious volume change and latent heat.

From the results above, the phase transformation relationship among LTT-, HTT-, and cubic-ZrWMoO₈ is thus established as showing in eq 1:

The phase transformation relationship between the stable cubic phase, trigonal phases, and metastable cubic phase for ZrWMoO₈ is different from the known phase transition in the $ZrW_{2-x}Mo_xO_8$ solid solution system. When x = 0, metastable cubic ZrW₂O₈ decomposes into corresponding oxides, and with heating to 773 °C, no trigonal ZrW₂O₈ phase emerges.¹² The trigonal phase was only separately synthesized by the nonaqueous sol-gel method. When x = 2. cubic ZrMo₂O₈ can be prepared through dehydration of the ZrMo₂O₇(OH)₂•2H₂O precursor within a very narrow temperature window by inhibiting the formation of the trigonal phase.^{2,18,34} Although the metastable cubic ZrW_{2-x}Mo_xO₈ phases can transform to trigonal phases at high temperature when the W/Mo ratio is smaller than 1, there are no reports that the trigonal phase can transform to the cubic phase directly. Before now, no trigonal phases were reported in $ZrW_{2-x}Mo_xO_8$ solid solutions when $x \le 1$. In this study, when x = 1, reversible phase transition occurs among trigonal and cubic ZrWMoO₈ phases. Therefore, it is reasonable to predict that thermodynamic equilibrium can be reached between trigonal and cubic ZrW_{2-x}Mo_xO₈ phases within a certain composition range around x = 1 and cubic phases of ZrW_{2-x}Mo_xO₈ could be synthesized through polymorphous transformation.

Compared to direct high temperature solid state reaction or precursor dehydration route, synthesis of ZrW_{2-x}Mo_xO₈ solid solutions through polymorphous transformations is easier. It is also possible to prepare single component composite material involving cubic and trigonal phases with an adjustable thermal expansion coefficient utilizing the ZrW_{2-x}Mo_xO₈ solid solution phase transformation and equilibrium properties.

Conclusion

Two new phases of ZrWMoO₈, HTT-ZrWMoO₈ and LTT-ZrWMoO₈, were found in this study. The HTT-ZrWMoO₈ is isomorphous with α'-ZrMo₂O₈ with symmetry of space group $P\bar{3}ml$, and the cell parameters are a=5.8404(1) Å and c = 6.0671(2) Å. The LTT-ZrWMoO₈ crystal structure is similar to that of α-ZrMo₂O₈, being two different polytypes of the α'-ZrMo₂O₈ structure. On the basis of this model, the LTT-ZrWMoO₈ crystal structure was successfully solved and refined in space group $R\bar{3}$, and the cell parameters are a=9.8722(1) Å and c = 17.5455(2) Å. Because Mo atoms are partially substituted by W, there is larger coordination polyhedron distortion, more significant structural layer fold-

⁽³⁴⁾ Lind, C.; Wilkinson, A. P.; Rawn, C. J.; Payzant, E. A. J. Mater. Chem. 2001, 11, 3354.

ing, and additional $M \cdot \cdot \cdot O_{terminal}$ interaction between structure blocks in LTT-ZrWMoO₈ compared with those in α -ZrMo₂-O₈. These differences between the two structures were also shown to correlate consistently with the observed different thermal expansion properties. The phase transitions between two trigonal forms and between HTT-ZrWMoO₈ and the cubic forms are reversible first order phase transitions. The results reveal that a certain composition range exists around a 1:1 W to Mo ratio, where cubic $ZrW_{2-x}Mo_xO_8$ and single composition cubic and trigonal composite material with adjustable thermal expansion coefficient could be prepared utilizing the polymorphous phase transitions existing in the system.

Acknowledgment. Project 20471010 supported by National Natural Science Foundation of China and the Foundation of Beijing Key Discipline of Inorganic Chemistry of Beijing Education Committee are gratefully acknowledged. Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Supporting Information Available: The Crystallographic Information Files (CIF) of HTT-ZrWMoO $_8$ and LTT-ZrWMoO $_8$ and the refined XRD pattern and the bond valence calculation results of LTT-ZrWMoO $_8$ (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

CM071605Y